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ART-MMAP: A Neural Network Approach
to Subpixel Classification

Weiguo Liu, Karen C. Seto, Elaine Y. Wu, Sucharita Gopal, and Curtis E. Woodcock

Abstract—Global or continental-scale land cover mapping with
remote sensing data is limited by the spatial characteristics of
satellites. Subpixel-level mapping is essential for the successful
description of many land cover patterns with spatial resolution
of less than 1 km and also useful for finer resolution data.
This paper presents a novel adaptive resonance theory MAP
(ARTMAP) neural network–based mixture analysis model—ART
mixture MAP (ART-MMAP). Compared to the ARTMAP model,
ART-MMAP has an enhanced interpolation function that de-
creases the effect of category proliferation in ARTa and overcomes
the limitation of class category in ARTb. Results from experiments
demonstrate the superiority of ART-MMAP in terms of estimating
the fraction of land cover within a single pixel.

Index Terms—Adaptive resonance theory (ART) mixture MAP
(ART-MMAP), adaptive resonance theory MAP (ARTMAP), mix-
ture analysis, neural network, subpixel classification.

I. INTRODUCTION

ACCURATE mapping of land cover at continental or global
scales is currently limited by the spatial and temporal char-

acteristics of the available satellite data. Many landscape fea-
tures occur at spatial scales much finer than the resolution of
the primary satellites used for continental or global land cover
mapping [e.g., the Moderate Resolution Imaging Spectrometer
(MODIS) and the Advanced Very High Resolution Radiometer
(AVHRR)]. Methods for mapping land cover at subpixel level
are thus of great interest. Several approaches have been used
to estimate subpixel fractional cover. Most of them use var-
ious models which are implemented during the image classi-
fication procedure, including linear spectral unmixing [1]–[3],
neural networks [4]–[8], fuzzy classifier [9], regression and de-
cision trees [10]–[12], Gaussian mixture discriminant analysis
[13] and maximum-likelihood classifier [14], [15]. The most
common approach is linear unmixing models, which prior re-
search has shown to generate acceptable results.

However, as demonstrated by Borel and Gerstl [16], linear
unmixing models may not be suitable in cases when multiple
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scattering results in nonlinear mixture. In this context, a non-
linear model can produce better results. Carpenter et al. [5]
present a nonlinear algorithm for mixture estimation based on
an adaptive resonance theory MAP (ARTMAP) neural network
for identifying life form components of the vegetation mixture.
Landsat Thematic Mapper (TM) imagery is used to estimate the
subpixel information for life-form components. The ARTMAP-
based mixture model is able to capture nonlinear effects and thus
perform better than the conventional linear unmixing models.
Atkinson et al. applied a multilayer perceptron (MLP)-based
mixture model to decompose AVHRR imagery [7]. The “unmix-
ture” information from the model was superior to results gener-
ated through linear unmixing model and fuzzy c-means classi-
fier. Foody used a simple regression- and contouring-based ap-
proach to produce a subpixel land cover map based on fuzzy
classification [9].

The objective of the paper is to present a novel mixture anal-
ysis model, ART mixture MAP (ART-MMAP). ART neural
network-based ART-MMAP mixture model helps to estimate
the proportion of land cover types within a single pixel of the
coarse resolution image. Such an approach will support a wide
range of applications within the National Aeronautics and Space
Administration’s Earth Science Enterprise including global cli-
mate modeling, estimation of photosynthesis, more accurate es-
timates of global urban extent, and biophysical parameter esti-
mation [17]–[19]. To evaluate the performance, ART-MMAP is
compared to ARTMAP and the regression tree (RT) model with
two datasets.

II. ARTMAP NEURAL NETWORK

The ART family of pattern recognition algorithms was devel-
oped by Carpenter and Grossberg [20], [21]. ART is a match-
based learning system, the major feature of which is its ability
to solve the “stability-plasticity dilemma” or “serial learning
problem,” where successive training of a network interferes with
previously acquired knowledge. That is, learning a new pattern
usually involves replacing or modifying the existing information
base. The modification of training data can be done with relative
ease if the network can learn all existing patterns in the training
data. However, the real-world environment likely is more com-
plex and dynamic than the training data. Training data are sup-
posed to represent the possible range of variability within and
among land cover types, but rarely do since they usually only
include “pure” archetypes. ART networks maintain the stability
of keeping previously learned patterns, while simultaneously
being flexible, or plastic, enough to master new patterns.

Among the ART family models, fuzzy ARTMAP is a super-
vised learning system that has been used widely in many fields.
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Fig. 1. Architecture of ARTMAP.

A comprehensive description of the model is detailed in Car-
penter [22] from which the synopsis of the basic architecture of
the fuzzy ARTMAP model is drawn (Fig. 1). It consists of a pair
of fuzzy ART modules, ART and ART , connected by an asso-
ciative learning network called map field. The architecture uses
a learning rule that minimizes the training error (to reduce bias)
while concurrently minimizing the testing error (to reduce the
combination of bias and variance). The “hidden units” in ART
and ART are called F nodes, which represent learned recogni-
tion categories. Each category (cluster or F node) extracts and
generates common spectral properties from input training data.

During the training phase, the ART and ART modules are
given input data and desired output pairs . As the two mod-
ules classify the and vectors into various map categories
(clusters), the map field makes the association between ART
and ART categories. If there is a discrepancy between the ob-
served and predicted values of , a memory search occurs in
the ART module. The match tracking component within the
module increases the sensitivity of the ART vigilance param-
eter, , to activate a memory search. A new memory search
increases the probability that an ART category will generate a
better predicted value of . If none of the existing categories
can minimize the predictive error or match the statistics of the
input vector, a new category is generated. This allows intraclass
variability to be captured through the creation of new classes.
Alternatively, if there is a match, the spectral characteristics of
the new input vector will be incorporated to redefine the at-
tributes of the category. This weighting function in effect gener-
alizes the category. Thus, an important attribute of fuzzy is that
it can capture both intra and interclass variability, facilitating
“many(cluster)-to-one (class)” mapping.

III. ARTMAP ALGORITHM

The ARTMAP algorithm uses a choice parameter, ; a
learning parameter, ; and a vigilance parameter,

. We summarize the ARTMAP algorithm by describing
how procedures including category choice, reset and learning
are executed. The choice function in ARTMAP, denoted by ,
is defined for each input and F node as follows:

(1)

where is the weight vector of the th F node, and the fuzzy
AND operator “ ” is defined by

(2)

and the norm is defined by

(3)

for any -dimensional vectors and .
At any given time, only one F node can be active and the

system is said to have made a category choice. Let the category
choice be indexed by , and let in the above equation be
written as for notational simplicity when the input is fixed.
Then

(4)

where is the number of category/F node. Note that if more
than one is maximal, the category with the smallest index
is chosen.

Resonance or Reset Operation: Resonance occurs if the
match function of the chosen th category
exceeds the vigilance criterion defined by . A mismatch reset
occurs when is less than . As long as remains
constant, the same category that was already selected as a
category during search cannot then be selected.

Learning: Once the search terminates, the weight vector
is updated according to the following equation:

(5)

In this equation, fast learning corresponds to setting to 1. The
mathematical and geometrical interpretation of fuzzy ART as
well details of system dynamics and algorithm will not be dis-
cussed in this paper as they have been presented elsewhere in
the literature [20]–[25].

Prediction: With (1)–(4) and a winner-take-all (WTA) rule,
the F node/category winner is assigned to the current input pat-
tern. According to the association between ART and ART
(one category in ART is mapped to one category in ART )
through MapField, the prediction output of ART is calculated
based on the following equation:

(6)

where is the class number, is the class index, is the ac-
tivated category in ART is the weight vector of category

is the number of categories in ,and

if maps to
else

(7)

For classification, the class label is assigned to the input pat-
tern with following equation:

(8)

For a mixture analysis, the mixture information is calculated as

(9)

where is the probability/proportion of class .
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IV. ART-MMAP ALGORITHM

Current literature [26]–[29] shows the potential weakness
and possible improvements of ARTMAP models. ARTMAP
is sensitive to the noise and outliers, and this may cause over-
fitting of the data and category proliferation. Several modified
ARTMAP models (distributed ARTMAP (dARTMAP) [27],
Gaussian ARTMAP [26], and ARTMAP [28]) have been
presented to partly resolve the category proliferation problem.
The goal of the ART-MMAP method proposed in this paper is
not to modify the learning process, but to decrease the effect
of category proliferation in the testing processing for mixture
analysis. The ART-MMAP model keeps the learning process of
ARTMAP and changes the testing and recognition processes.
During the testing process, ARTMAP selects the category to
test samples using WTA rule. For the mixture analysis problem,
because the categories in ART are similar, it is dangerous
to take one winner over all others if the difference between
the activation of the categories is indistinguishable. Instead of
picking one winner, ART-MMAP selects the winners (ART )
based on one threshold parameter. If the activation value of
the category is larger than the threshold value, the category is
selected. If none of the categories are selected, the WTA rule
will be activated. Below is the ART category selection rule for
ART-MMAP

if

else
(10)

where is the threshold, is the activation value of
category in ART , and is the weight vector of the category
in ART .

The interpretation of mixture information of ART-MMAP
uses the weighted summation operator

(11)

where is the proportion of class , and is the category index
of ART is the category index of ART is the weight
vector of , and is the number of categories in ART .

With (10) and (11), ART-MMAP provides one en-
hanced function: interpolation. The learning of ARTMAP
is data-driven, and the categories only store the information
presented in the training data. Unlike the classification problem,
the training data of mixture analysis problem cannot cover all
combinations of class proportions. Thus, the learning process
of ARTMAP will introduce the class category limitation in
ART . For a two classes (0 and 1) mixture problem, if the
training data only have pure class (either class 0 or class 1,
no -like combinations) samples, the prediction of the
trained ARTMAP network will be either 0 or 1 regardless of
the combination (i.e., ) of the testing sample. With
(10), several feature categories (ART ) are selected if the input
pattern is similar enough to the categories in the feature space.
For example, three categories representing pure class 1 and 2
categories representing pure class 0 (ART ) are selected for
a mixture pattern with (10). To simplify the computation, we

Fig. 2. Simulated dataset.

assume the activation value (1) of each selected winning cate-
gory is equal. Following (11), the class proportion is calculated
as 0.6 for class 0 and 0.4 for class 1. The mixture pattern is
predicted as , which does not exist in the training data.
Thus, the interpolation function of ART-MMAP decreases the
effect of class category limitation and smoothes the prediction
error as well. Due to the learning rules, ARTMAP will generate
categories representing the noise and outliers [26]. In the
testing process, some input patterns will be classified into these
noise categories with WTA selection rule and then may cause
misclassification. With the interpolation function, the error
caused by the noise category will be limited to a low level.

V. DATA

To evaluate the performance of ART-MMAP, two datasets are
applied. One is a simulated dataset, and the other is derived from
MODIS and Landsat images.

A. Simulated Dataset

The simulated two-dimensional (2-D) feature space has one
square and two circles (Fig. 2). The points in the inner circle
have class label 1, the points out of the outer circle are labeled
as 0, and other points in the outer circle and out of the inner
circle have mixture information. The class label of these mixed
pixels in gray area (Fig. 2) ranges from 0 to 1 and is propor-
tional to the reciprocal of the distance from the points to the
center of the square. The dataset has randomly generated 900
training samples and 10 000 testing samples. Each sample has
a 2-D feature vector (i.e., ) that is the input to
ART and a class label (i.e., ) that is the input to ART
during the training process.

B. MODIS Dataset

The satellite data consists of a Landsat-7 Enhanced Thematic
Mapper+ (ETM ) image (path 168 and row 032) acquired on
August 19, 1999, and a MODIS image [20 horizontal and 04
vertical (20–4)] acquired on August 27, 2000, with a total area
of 139 146 (20 294) cells each having a resolution of 1 km .
Landsat-7 ETM image has a resolution of 30 m 30 m. The
images cover north central Turkey. Three steps are applied
to calculate the fractional land cover for each MODIS pixel
at 1-km resolution. First, the Landsat-7 ETM image is
classified into four classes (forest, grass, water, and barren)
with ART-VIP [25]. Second, the classified Landsat-7 ETM
image is registered with MODIS images using ground control
points (GCPs) and image-to-image registration with ERDAS
Imagine software. Third, the classification map is associated
with MODIS image to estimate the fraction of land cover
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classes for each pixel at MODIS scale. For the purpose of
training, a total of 1884 MODIS pixels were randomly selected
from the image. The testing dataset includes all the pixels of the
entire image. Each sample has a digital number value of seven
spectral bands and the proportion of each land cover type. The
spectral vector is the input to ART and the class proportion
vector (i.e., ) is the input to ART for learning.

VI. RESULTS AND DISCUSSION

Carpenter et al. [5] and Liu et al. [4] used the ARTMAP al-
gorithm for mixture analysis, and the results are significant im-
provements to the linear unmixing model. In this paper, the per-
formance of ART-MMAP is compared to that of the ARTMAP
mixture algorithm described in Carpenter et al. [5] and Liu et al.
[4] and the regression tree algorithm with two datasets. The re-
gression tree can automatically generate a tree for class propor-
tion estimation. Two measures of performance are used—root
mean square (rms) errors and bivariate distribution functions
(BDFs) between the real and estimated subpixel land cover pro-
portions. The BDF is helpful to visualize the accuracy of pre-
diction by mixture models. Finally, we calculate the Z-statistics
using subpixel prediction error to test the statistical significance
of differences in results between ART-MMAP and ARTMAP,
ART-MMAP and the regression tree model [30]. The Z-statis-
tics tests the null hypothesis that, for a particular class, the sub-
pixel prediction error of the ART-MMAP model is equal to that
using the ARTMAP/regression tree model. Values of Z that ex-
ceed the critical threshold indicate that the prediction errors are
different. The less prediction error (more accurate prediction) is
identified by the sign on Z. A negative sign indicates that the
results from ART-MMAP model are more accurate (less error)
than results from ARTMAP or the regression tree model.

A. Simulated Dataset

With the simulated dataset, the parameters of ART-MMAP
are set as , and . Testing with
10 000 samples, the rms error is 0.06, 0.031, and 0.05 for
ARTMAP, ART-MMAP, and the regression tree, respectively.
The absolute value of the prediction error (difference between
real and estimated class proportion) of each testing sample is
shown in Fig. 3. The figure clearly shows the distribution of the
prediction error that mainly exists in the buffer of two circles
(gray area in Fig. 2). In terms of prediction error, ART-MMAP
has smallest error range (0–0.17). The high error range of
ARTMAP (0–0.65) is mainly caused by the two peak error
areas. The error range of the regression tree is 0–0.23. The
analysis results clearly illustrate that ART-MMAP is superior
to ARTMAP and the regression tree with this simulated dataset.

Points along a 1 : 1 line on the BDF graph indicate a pre-
diction that matches completely with the real proportion. The
smaller the difference between the predicted and real propor-
tion, the closer the point will lie to the diagonal 1 : 1 line. Fig. 4
illustrates that ART-MMAP predicts more points within the
10% error bound than ARTMAP and the regression tree. As
discussed in Section IV, ARTMAP only stores the category
information (both ARTs) of training data. Thus, the prediction
of any sample will be one of the categories at ART (class

(a)

(b)

(c)

Fig. 3. Error distribution of test data (X and Y axis are the two dimensions in
feature space, and Z axis is the absolute difference between real and estimated
class proportion). (a) ARTMAP. (b) ART-MMAP. (c) Regression tree.

information). This is why we observe several horizontal lines
in the BDF of ARTMAP. Each horizontal line represents all the
samples predicted to one category of ART . The regression tree
BDF shows results similar to ARTMAP. With the enhanced



1980 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 9, SEPTEMBER 2004

(a)

(b)

(c)

Fig. 4. BDFs of simulated test data. (a) ARTMAP. (b) ART-MMAP.
(c) Regression tree.

interpolation function, the prediction of ART-MMAP over-
comes the class category limitation of ARTMAP and is more
accurate.

Table I shows the Z-statistics result of simulated dataset.
The prediction accuracy of ART-MMAP model is significantly
better than that for ARTMAP and the
regression tree .

B. MODIS Dataset

With this dataset, the parameters of ART-MMAP are set as
, and . In Fig. 5, ART-MMAP has

more points than ARTMAP and the regression tree drawn be-
tween the two 20% difference lines. Similar to Fig. 4(a), there
are many horizontal lines in Fig. 5(a) presenting the class cat-
egory limitation of ARTMAP. The prediction of ART-MMAP
shown in Fig. 5(b) produces more different kinds of class com-
binations to match the test data. The comparison between the
horizontal lines shown in ARTMAP and even distribution of
all points in ART-MMAP provides another good example for
ART-MMAP’s interpolation function.

Table II shows the rms error of MODIS testing data using
ARTMAP, ART-MMAP, and the regression tree models. There
are fewer rms errors with ART-MMAP for three out of four
classes (barren, grass, and forest) indicating its better perfor-
mance than ARTMAP and the regression tree model. The per-
formance of ARTMAP is similar to that of the regression tree
for these three classes. Both ARTMAP and ART-MMAP are su-
perior to the regression tree in terms of predicting water class
proportion.

The Z-statistics result of prediction accuracy comparison be-
tween ART-MMAP and ARTMAP, ART-MMAP, and the re-
gression tree is shown in Table III. In terms of individual class,
ART-MMAP 1) has significant higher prediction accuracy than
ARTMAP with class grass and class
forest , 2) has better accuracy with
class barren , and 3) has similar ac-
curacy to ARTMAP with class water .
Compared to the regression tree model, the prediction accu-
racy of ART-MMAP is significantly higher with class grass

and forest .
There is no significant difference between ART-MMAP and a
regression tree for class barren and water.

VII. IMPLEMENTATION

To implement ART-MMAP, several parameters need to be
considered. For the vigilance parameter of both ART and
ART , the general rule is that the bigger the value, the more
categories ARTMAP generates. For simulated dataset, we set

and for the MODIS data
and it produces good result. More details about setting parame-
ters of ARTMAP model was discussed in the previous literature
[5], [20]–[25].

The new parameter introduced in ART-MMAP is the
threshold value . Tables IV and V show the rms
error with different threshold value for simulated and MODIS
dataset respectively. With MODIS dataset, ART-MMAP pro-
duces the least rms error when threshold value is set as 0.90,
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(a) (b)

(c)

Fig. 5. BDFs between real and estimated subpixel land cover types of test data. (a) ARTMAP. (b) ART-MMAP. (c) Regression tree.

TABLE I
COMPARISON BETWEEN ART-MMAP, ARTMAP, AND THE

REGRESSION TREE WITH SIMULATED DATA

TABLE II
RMS ERROR OF TEST DATA

but generates the best result with threshold value set as 0.97 for
simulated data. With a higher threshold value, more samples
will find fewer winning categories, and even no category will
be selected, which will trigger WTA rule. Thus, interpolation
function does not affect these samples and the prediction
accuracy will be similar to that of ARTMAP. With a very low
threshold value, the sample will select too many categories,
which will also cause prediction error. Since MODIS dataset
has more noise than simulated dataset, and thus the activation
value is not very high, the threshold value is set lower for
MODIS dataset. With real-world satellite images, we suggest
that the threshold value be set up around [0.85, 0.95].
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TABLE III
COMPARISON BETWEEN ART-MMAP, ARTMAP, AND THE REGRESSION TREE WITH MODIS DATA

TABLE IV
RMS ERROR WITH DIFFERENT THRESHOLD VALUES—SIMULATED DATASET

TABLE V
RMS ERROR WITH DIFFERENT THRESHOLD VALUES—MODIS DATASET

VIII. CONCLUSION

Moderate- and coarse-resolution satellite images are widely
being used for continental and global land cover mapping. Since
the spatial resolution of these satellites is much coarser than
the scale of ecological land cover features, many of the image
pixels may be mixed. Mixture analysis with linear and nonlinear
algorithms has been widely used to estimate land cover type
proportions at subpixel levels.

Some nonlinear mixture analysis models, i.e., artificial
neural networks, have shown improved performance compared
to traditional linear models. The ART-MMAP mixture analysis
model presented here is based on one of the most successful
artificial neural networks, ARTMAP. Previous research has
proved that the ARTMAP mixture model outperformed the
linear mixture model in terms of subpixel-level interpretation
[4], [5]. The goal of ART-MMAP is to decrease the effect of
feature category proliferation in ART and overcome the limita-
tion of class category in ART during the testing processing for
mixture analysis. The ART-MMAP model keeps the learning
process of ARTMAP and changes the testing and recognition
processes. Instead of picking one winner, ART-MMAP selects
the feature categories (ART ) based on the threshold parameter.
With an enhanced interpolating prediction function that is based
on a weighted summation operator, ART-MMAP overcomes
the limitation of class category of ARTMAP and increases the
prediction accuracy as well. Test results based on two datasets
show the improvement of ART-MMAP over ARTMAP and the
regression tree model.
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